Errata

für den Titel

Prof. Dr.-Ing. Christoph Seeßelberg:

Kranbahnen

Planung – Konstruktion – Berechnung – Fertigung – Inspektion – Ertüchtigung

6. Auflage 2020, ISBN 978-3-410-29259-3

Auf **Seite 138** muss es in der unteren Strichaufzählung statt "• statische Prüflast, 125 % der Nenn-Hublast, Schwingbeiwert ϕ_6 = 0" richtig heißen: "... Schwingbeiwert ϕ_6 = 1,0"

Auf **Seite 147** muss es in Tabelle 8.5, 7. Zeile, 4. Spalte statt "statische Prüflast ϕ_6 = 0" richtig heißen: "statische Prüflast ϕ_6 = 1,0"

Auf **Seite 198** muss die Tabellenüberschrift von Tabelle 9.13 statt "Spannweite [m] des Einfeldträgers" richtig heißen: "Spannweite [m] des Zweifeldträgers"

Auf **Seite 278** ist die Darstellung in der oberen Tabelle 13.6 wie folgt zu korrigieren (die korrigierte Stelle ist in Rot hervorgehoben):

Tab. 13.6: BDK: Ansatz der Imperfektion e_0 in y-Richtung als Vorkrümmung nach [3-1-1NA/ 5.3.4 (3)] bei einem zweifeldrigen Kranbahnträger; Darstellung im Grundriss

Linke Spalte: Knicklinien für BDK			bei elastischer	bei plastischer		
nac	nach [3-1-1/Tab. 6.5]		Querschnittsausnutzung	Querschnittsausnutzung		
(<i>l</i> :	(l: Stützweite der Kranbahn)		$l/e_0 =$	$l/e_0 =$		
b	Walzprofile	$h/b \le 2,0$	250	200		
С	Walzprofile	h/b > 2	200	150		
c	Schweißprofile	$h/b \le 2,0$	200	150		
d	Schweißprofile	h/b > 2	150	100		
	Diese Werte gelten für $0.7 \le \bar{\lambda}_{LT} \le 1.3$.					
Für $\bar{\lambda}_{LT} < 0.7$ oder $\bar{\lambda}_{LT} > 1.3$ dürfen die Werte für e_0 halbiert werden.						
H						
e_0 F F						

Auf **Seite 278** sind ferner im ersten Abschnitt von Kapitel 13.5 vier Zahlenwerte zu korrigieren (die korrigierten Stellen sind in Rot hervorgehoben):

13.5 Empfehlungen zur Auswahl des BDK-Nachweisverfahrens

Um Empfehlungen ableiten zu können, wurde zunächst für einen beispielhaften Kranbahnträger der Biegedrillknicknachweis mit den verschiedenen Verfahren ausgeführt. Die sich daraus ergebenden Auslastungswerte werden miteinander verglichen. Als Beispiel dient der in Kap. 17 durchgerechnete zweifeldrige Kranbahnträger mit 6 m Spannweite (HEB 300, zweiachsiger 10-t-Kran IFF, Einwirkungskombination mit LG 5). Tab. 13.7 zeigt das Ergebnis: Die Auslastung schwankt je nach Nachweisverfahren zwischen 51 % für den Schnittgrößennachweis nach Th. II. O. und 95 % für den "Knickenden Obergurt". Der Spannungsnachweis nach Th. II. O. schneidet mit 80 % wegen der nicht erfolgten Ausnutzung plastischer Querschnittsreserven kaum besser ab als der "Knickende Obergurt" mit 95 %. Mit den genaueren, aufwändigeren Verfahren berechnet, reicht ein HEB 280 als Profil aus, die ungenaueren, einfacheren Verfahren ergeben die Notwendigkeit eines HEB 300.

Auf **Seite 279** ist eine Zahl in der oberen Tabelle 13.7 zu korrigieren (die korrigierte Stelle ist in Rot hervorgehoben):

Tab. 13.7: Ve	rgleich ver	schiedener	BDK-N	achweisver	rfahren a	anhand I	Bsp. Kap.	17.
---------------	-------------	------------	-------	------------	-----------	----------	-----------	-----

Verfahren	Auslastung	nachweisbares	Berechnungs-
	*)	HEB-Profil **)	aufwand
Knickender Obergurt	95 %	HEB 300	Von Hand, gering
Abs. 13.2 und 17.6.1			
Verfahren nach [3-6/Anh. A]	75 %	HEB 280	Von Hand, sehr gering
vereinfachte Vorgehensweise			
Abs. 13.3.2 und 17.6.2			
Verfahren nach [3-6/Anh. A]	64 %	HEB 280	Software erforderlich,
ohne Vereinfachungen			zusätzlich aufwändige

Auf **Seite 306** ist die Zeitangabe in der 4. Zeile der 3. Spalte von Tabelle 15.1 falsch. Die berichtigte Tabelle lautet (die korrigierte Stelle ist in Rot hervorgehoben):

Tab. 15.1: Teilsicherheitsbeiwerte γ_{Mf} , Inspektionsanzahl und Inspektionsintervalle für Kranbahnen nach [3-6NA/Tab.NA.3]

Teilsicherheitsbeiwert γ _{Mf}	Anzahl der Inspektionen n	Sicheres Betriebszeitintervall,		
	während der planmäßigen	Inspektion nach *)		
	Nutzungsdauer			
1,00	3 (Schadenstoleranzkonzept)	6,25 Jahren		
1,15 (Regelfall)	2 (Schadenstoleranzkonzept)	8 Jahren		
1,35	1 (Schadenstoleranzkonzept)	12,5 Jahren		
1,60	0 (Safe-Life-Concept)	25 Jahren		
*) Die angegebenen Zeiträume beziehen sich auf eine Nutzungsdauer von 25 Jahren. Bei				
längaran odar kijizzaran Nutzun gadanarn sind dia Zaitintarvalla nau-zu-harachnan				

Auf **Seite 327** sind im Abschnitt 15.3.6.2 unter Aufzählungspunkt 2 einige Worte zu korrigieren (die korrigierten Stellen sind in Rot hervorgehoben):

15.3.6.2 Vorgehensweise bei der Kerbfalleinstufung

Folgende Vorgehensweise ist geeignet, wenn der passende Kerbfall für ein Konstruktionsdetail in Kombination mit einer bestimmten Belastung gesucht ist.

- 1. Suche des Kerbfalls in DIN EN 1993-1-9. Auf den nachfolgenden Seiten dieses Buches sind einige Kerbfälle abgedruckt.
- 2. Falls der gesuchte Kerbfall im ersten Schritt nicht gefunden wurde: Welcher in [3-1-9] enthaltene Kerbfall deckt auf der sicheren Seite liegend das geplante Konstruktionsdetail mit der vorliegenden Beanspruchung ab? Z.B. ist in [3-1-9] kein Kerbfall direkt zu finden, der den Obergurt im Bereich einer aufgeschweißten Schienenklemme beschreibt. Der T-Stoß in [3-1-9/Tab.8.5, Fall 1] deckt jedoch diesen Fall mit ab und ist daher der passende Kerbfall.

Auf **Seite 349** ist ein Index (oz) in der Seitenmitte zu korrigieren (die korrigierte Stelle ist in Rot hervorgehoben):

- Da jede Kranüberfahrt zu zwei Spannungsspitzen führt, wird die Beanspruchungsklasse (BK) von S₂ auf S₃ erhöht (Tab. 15.3).
- Schadensäquivalente Spannungsschwingbreite für BK S_3 mit $\lambda = 0.397$
- $\Delta \sigma_{E,2} = \lambda \cdot \Delta \sigma_{oz} = 0,397 \cdot 9,72 = 3,86 \text{ kN/cm}^2$
- Der Nachweis lautet:

$$D = \left(\frac{\gamma_{\rm Ff} \cdot \Delta \sigma_{\rm E,2}}{\Delta \sigma_{\rm C}/\gamma_{\rm Mf}}\right)^3 = \left(\frac{1.0 \cdot 3.86}{10/1.15}\right)^3 = 0.444^3 = 0.087$$

Auf **Seite 350** sind zwei Exponenten in der Seitenmitte zu korrigieren (die korrigierten Stellen sind in Rot hervorgehoben):

- \bullet Da jede Kranüberfahrt zu zwei Spannungsspielen führt, wird die Beanspruchungsklasse (BK) von S_2 auf S_3 erhöht.
- Schadensäquivalente Spannungsschwingbreite für BK S_3 mit $\lambda=0,575$
- $\Delta \tau_{E,2} = \lambda \cdot (\Delta \tau_{xz,Ed} + \Delta \tau_{oxz,Ed}) = 0,575 \cdot (6,1+3,88) = 5,74 \text{ kN/cm}^2$

$$D = \left(\frac{\gamma_{\rm Ff} \cdot \Delta \tau_{\rm E,2}}{\Delta \tau_{\rm C}/\gamma_{\rm Mf}}\right)^5 = \left(\frac{1,0 \cdot 5,74}{10/1,15}\right)^5 = 0,66^5 = 0,126$$

1.4 Gesamtschädigung aus Kran a: $D_a = 0.087 + 0.059 + 0.126 = 0.272 < 1.0$ (\checkmark)

2. Kran b

Die Berechnung der Schädigung erfolgt analog zu Kran a. Hier wird nur das Endergebnis der Schädigung aus Kran b angegeben:

$$D_b = 0.019 + 0.020 + 0.009 = 0.048 < 1.0 \quad (\checkmark)$$

3. Roido Krone aemeircom

Auf **Seite 383** führt ein Rechenfehler zu veränderten Zahlenwerten. (Die korrigierten Stellen sind in Rot hervorgehoben):

17.6.1 Knickender Obergurt nach [3-6/6.3.2.3(1)] für EK 1

- Nachweisprinzip: knickender Obergurt, siehe Abschnitt 13.2.
- Schnittgrößen des Ersatz-Druckstabs

$$N_{\text{Og,Ed}} = \frac{M_{\text{y,Ed}}}{h - t_{\text{f}}} = \frac{19580 \text{ kNcm}}{(30 - 1.9) \text{ cm}} = 697 \text{ kN}$$

- $M_{z,Ed} = 41,4 \text{ kNm (EK1, siehe Abschnitt 17.3)}$
- Knicklänge des Druckstabs: Zweifeldträger $L_{\rm cr}=0,85\cdot l=0,85\cdot 6=5,1$ m und λ_1 nach Gl. 13.2

$$\bar{\lambda}_{z} = \frac{L_{cr}}{i_{z,Og} \cdot \lambda_{1}} = \frac{510 \text{ cm}}{8,06 \text{ cm} \cdot 76,4} = 0,83$$

- Knicklinie: Das Walzprofil wird wegen der angeschweißten Flachstahlschiene wie ein Schweißprofil behandelt. Knicklinie c nach Tab. 13.1.
- Mit dem Imperfektionsbeiwert $\alpha = 0.49$ nach Tab. 13.2 ergibt sich

$$\begin{split} \phi &= 0, 5 \cdot \left[1 + \alpha \cdot \left(\bar{\lambda}_z - 0, 2\right) + \bar{\lambda}_z^2\right] = 0, 5 \cdot \left[1 + 0, 49 \cdot (0, 83 - 0, 2) + 0, 83^2\right] = 1, 0 \\ \chi_z &= \frac{1}{\phi + \sqrt{\phi^2 - \bar{\lambda}_z^2}} = \frac{1}{1, 00 + \sqrt{1, 00^2 - 0, 83^2}} = 0, 64 \end{split}$$

• Für die Querschnittsklassen 1 und 2 gilt nach [3-1-1/Anhang B]

$$\begin{split} k_{\rm zz} &= C_{\rm mz} \cdot \left(1 + \left(2 \cdot \bar{\lambda}_{\rm z} - 0.6 \right) \cdot \frac{N_{\rm Og, Ed} \cdot \gamma_{\rm M1}}{\chi_{\rm z} \cdot A_{\rm Og} \cdot f_{\rm y}} \right) \\ &= 0.9 \cdot \left(1 + \left(2 \cdot 0.83 - 0.6 \right) \cdot \frac{697 \cdot 1.1}{0.64 \cdot 62.8 \cdot 35.5} \right) = 1.41 \end{split}$$

jedoch:

$$k_{zz} \le C_{mz} \cdot \left(1 + 1, 4 \cdot \frac{N_{\text{Og,Ed}} \cdot \gamma_{\text{M1}}}{\chi_z \cdot A_{\text{Og}} \cdot f_y}\right) = 0, 9 \cdot \left(1 + 1, 4 \cdot \frac{697 \cdot 1, 1}{0, 64 \cdot 62, 8 \cdot 35, 5}\right) = 1,58$$

• Nachweis: (mit $k_{zz} = 1,41$)

$$\begin{split} \frac{N_{\text{Og,Ed}} \cdot \gamma_{\text{M1}}}{\chi_{\text{z}} \cdot A_{\text{Og}} \cdot f_{\text{y}}} + \frac{k_{\text{zz}} \cdot M_{\text{z,Ed}} \cdot \gamma_{\text{M1}}}{W_{\text{Og,z}} \cdot f_{\text{y}}} \leq 1\\ \frac{697 \cdot 1, 1}{0,64 \cdot 62, 8 \cdot 35, 5} + \frac{1,41 \cdot 4140 \cdot 1, 1}{435 \cdot 35, 5} = 0,537 + 0,416 = 0,95 \leq 1 \quad (\checkmark) \end{split}$$

Auslastung EK1: 95 %

Der Nachweis mit dem Verfahren des knickenden Obergurts liefert für die EK5 eine Auslastung von 90%.

Auf **Seite 396** muss im Abschnitt 17.9.3.1 die erste Punktaufzählung wie folgt geändert werden (die korrigierten Stellen sind in Rot hervorgehoben):

17.9.3.1 Normalspannungen in der Schienenschweißnaht im Feld

- $\max \Delta M_y$ wird mit Tab. 10.2 berechnet: $\alpha = a/l = 3,6/6 = 0,6$ Aus der Tabelle ablesen: $\gamma_{\Delta MF} = 0,252$ $\max \Delta M_y = \gamma_{\Delta MF} \cdot F_{f, Ed} \cdot l = 0,252 \cdot 106, 2 \cdot 6 = 160,6$ kNm (Abb. 17.6)
- Normalspannungsspiel aus der statischen Berechnung

$$\Delta \sigma_{x,\text{max}} = \frac{\text{max} \Delta M_y}{W_y} = \frac{16060 \text{ kNcm}}{1680 \text{ cm}^3} = 9,56 \text{ kN/cm}^2$$

Auf **Seite 420** muss im Abschnitt 18.4.8 die erste Punktaufzählung wie folgt geändert werden (die korrigierten Stellen sind in Rot hervorgehoben):

$$\Delta\sigma_{\Sigma,x,Ed} = \Delta\sigma_{x,Ed} + 0.75 \cdot \sigma_{ox,Ed} = \frac{\Delta M_{y,Ed}}{W_y} + 0.75 \cdot c_{x,1} \cdot \frac{F_{z,Ed}}{t_f^2}$$

$$= \frac{10120}{1890} + 0.75 \cdot 2.323 \cdot \frac{10.09}{1.75^2} = 11.09 \text{ kN/cm}^2$$

Auf der sicheren Seite liegend wird angenommen, dass das berechnete Lastspiel zwei Mal pro Überfahrt auftritt, siehe oben Bsp. 18-3. Der schadensäquivalente Beiwert der um 1 erhöhten BK S_6 beträgt $\lambda=0,794$. Die schadensäquivalente Spannungsschwingbreite ergibt sich nun zu:

$$\Delta \sigma_{x.E.2} = \lambda \cdot \Delta \sigma_{\Sigma.x.Ed} = 0.794 \cdot 11,09 = 8,80 \text{ kN/cm}^2$$

Die Schädigung berechnet sich zu:

$$D_{\sigma \mathbf{x}} = \left(\frac{\gamma_{\mathrm{Ff}} \cdot \Delta \sigma_{\mathbf{x}, \mathrm{E}, 2}}{\Delta \sigma_{\mathrm{C}} / \gamma_{\mathrm{Mf}}}\right)^{3} = \left(\frac{8, 80}{16 / 1, 6}\right)^{3} = 0,681 \leq 1,0 \quad (\checkmark)$$

Wir bitten diese Fehler zu entschuldigen.

Ihr Beuth Verlag